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The results of numerical simulation of the dynamics of a high-velocity impact upon a water surface are de-
scribed in the approximation of two-dimensional hydrodynamics in cylindrical variables for bodies with di-
mensions, of about 1 km and impact velocities of about 50 km/sec. In the calculations a wide-range
semiempirical equation of the state of water was used, with allowance for cold compression, phase transition
into vapor, and the processes of dissociation and ionization. A comparison is made between calculations of
an impact upon water and impacts upon different types of ground (gabbroid anorthosite, granite), which are
described by both analytical equations of state and wide-range ones with phase transitions taken into account.

Investigations of the processes occurring on impact of space objects upon the surface in planets are of interest
in geophysics and planetology and to date have undergone intensive development. The present work was carried out
to elucidate the influence of the equations of state of the material upon which the impact occurs (target) on the dy-
namics of the flow induced. In considering a high-velocity impact upon water we assume that a semispace is filled
with water. In reality, the depth of the ocean is finite; when a shock wave is reflected from the bottom, the material
of the latter is entrained into motion, a bottom crater is being formed, the bottom may be uncovered, etc. [1], which
will make a comparison with an impact upon a ground difficult. It is precisely to exclude the influence of these proc-
esses in comparing with an impact upon a ground in its "pure" form that such a statement of the problem has been
used. We will consider the results of two-dimensional modeling of the dynamics of an impact of cosmic bodies upon
a semispace filled with water and will compare it with similar modeling of an impact upon different types of ground
(gabbroid anorthosite and granite).

To describe the flow set up upon impact of cosmic bodies upon a surface, a system of equations of gas dy-
namics for an axisymmetrical case in cylindrical coordinates r and z is employed:
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For numerical solution of system (1) a fully conservative difference scheme is used with a coordinated ap-
proximation of flows in Euler variables [2]. In this scheme, the velocities are prescribed at the corners of cells,
whereas energy, density, pressure, etc. are given at the centers. A description of the finite-difference scheme, the tech-
nique of solution, and the means of constructing a difference grid is given in [3].

In order to close the system of gasdynamic equations, it is necessary to prescribe the equations of state P =
P(ε, ρ) and T = T(ε, ρ). At impact velocities on the order of 100 km/sec, the thermodynamic state of the material
upon which the impact occurs changes in wide ranges — from a condensed one to a high-temperature plasma. In view
of this, the equations of state must describe different phases of a substance and transitions between them, as well as
take into account dissociation and ionization. Several such wide-range equations of the state of water are described in
detail in the literature [4–8]. In order to calculate the equations of state of water, a procedure similar to that of [9, 10]
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was used. Pressure and energy are represented as the sum of the cold and thermal constituents, with the dissociation
and ionization energies being additionally introduced into the energy term:

P = Pc + Pth ,   ε = εc + εth + εd + εion .

Expressions for the cold constituents of pressure and energy have the following form:

Pc = A (δσ+1
 − δµ+1) ,   εc = 
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 + q ,

where δ = ρ ⁄ ρ0; ρ0 = 1 kg/dm3; A = 0.5625 GPa; σ = 4.2223; µ = 0.2223, and q = 2.4 MJ/kg. These values differ
somewhat from those given in [9] and conform better to both the dependence of the cold constituents on density ac-
cording to [4, 6] and to the evaporation energy q in comparison with the experimental data on saturated steam.

The heat constituents at low temperature describe the molecular component (liquid and steam). Here, the heat
capacity of the liquid is taken equal to 9R (a triatomic molecule) and of steam — 8 ⁄ 2R (eight degrees of freedom).
The expression for the molecular component of energy is written as

εm = f1 (z) 
3k (T − T0)

2m
 ,   f1 (z) = 

2 (3 + 4z)
1 + 3z

 ,

with z = lτ ⁄ ϕK taken as the parameter of interpolation between the indicated values of heat capacity, where τ =
(T − T0)/Tcr, ϕ = ρ ⁄ ρcr are the reduced temperature and density, K is a constant, and T0 = 273 K. The pressure in
the indicated region of temperatures is defined as

Pm = f2 (z) ρεm ,   f2 (z) = 
3γ + z

3 + 4z
 ,

where γ is the Gru
..

neisen coefficient of the liquid.
To perform an approximate account for the dissociation of molecules we assume that there is decomposition

into two components, 2H + O, with the dissociation energy Q = 9.6 eV. Then the degree of dissociation β is found
from the equation

β2

1 − β
 = 

C ′

ρT
1 ⁄ 2

 exp (− Q ⁄ kT) .

The value C ′ = 107 (K1 ⁄ 2⋅kg)/m3 is selected from comparison with the results of detailed calculations of the dissocia-
tion of a water molecule. The heat constituents of the energy and pressure of water with allowance for the dissociation
of molecules into atoms are determined from the following expressions:

εth = (1 − β) εm + 3βεa ,   εa = 
3k (T − T0)

2m
 ,   εd = βkQ ⁄ m ,   Pth = (1 − β) Pm + 3βPa ,   Pa = 

2

3
 ρεa .

On increase in the temperature, the ionization of atoms and formation of ions of different ionization stages are possible.
Since the energy densities during the impact are very high, multiple ionization of ions was taken into account with
the aid of the Saha system of equations (the index that prescribes the species of an atom is omitted for simplicity):
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Then, when ionization is allowed for, the formulas for the thermal constituents of energy and pressure are modified as
follows:
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εth = (1 − β) εm + 3β (1 + x) εa ,   Pth = (1 − β) Pm + 3β (1 + x) Pa ,

where x = ne
 ⁄ n is the degree of ionization. The ionization energy is determined from the expression

εion = ∑ Qiαi
 ⁄ m ,     Qi = ∑ 

k=1

i

 Ik ,     αi = ni
 ⁄ n .

The semiempirical parameters needed for calculation have the following values: l = 1.615, K = 3, ρcr = 0.318 kg/dm3,
Tcr = 647 K, and γ = 0.72. The dependences of pressure on density that were calculated by this technique for a set
of values of internal energy are given in Fig. 1.

Several variants of an impact of cosmic bodies consisting of ice and having a size from 0.2 to 1 km upon
water with impact velocities 20–80 km/sec were calculated. As an example of calculation we will consider the follow-
ing variant. An incident body is prescribed in the form of a cylinder with its length equal to the diameter H = d = 1
km and with density ρ = 0.92 kg/dm3. Its velocity U = 50 km/sec is directed normally to the water surface. Since the
qualitative picture of flow is similar to that given by the calculations of an impact upon a ground, we will describe it
only briefly. At the initial instant of time, the body comes in contact with the water surface and the pressure at the
place of impact increases rapidly. Two shock waves arise: one travels through the body of the striker and vaporizes it
and the other — through the target material, with the striker, when it penetrates into the target, creating a crater (bub-
ble), its substance spreading over the surface of the crater formed. The shock wave propagating through the water
rather rapidly acquires a shape close to a hemispherical one and further on grows in size, weakening gradually. As
long as its intensity is rather high, the target material will evaporate, with the latter being ejected from the bubble
(crater) into the atmosphere. The fields of density, pressure, and temperature are shown in Fig. 2 for three instants of
time. At time t = 0.3 sec, a shock wave in water reaches a depths of z = 4.3 km, with its radial size being a little
bit less than 3 km. A shock wave in a gas rises to a height of 5.5 km, with its radius attaining 3.2 km. The depth of
the crater (bubble) comes up to 4 km, with its radius exceeding 2 km. The maximum of the temperature in the region
near the crater amounts to about 5 eV, with 4 eV in the gaseous region. With time, the dimensions of the region in-
volved in a flow increase and the maximal parameters in it gradually go down. By the instant of time t = 2 sec, the
shock wave in the gas rises to a height of 22 km, expanding to a radius of 8 km. The maximum pressure in it
amounts to 160 kbar with a temperature of 1.6 eV. The shock wave in the ground reaches a depth of 10 km with 8
km in radius. The maximum pressure in it is equal to 6.6 kbar. The hot region from the crater ascends to a height of

Fig. 1. Dependence of pressure on a set of energies according to wide-range
equations of the state of water (log ε changes from below upward from −0.5
to 2.5 with a step of 0.3333). ρ, kg/dm3; P, GPa; ε, MJ/kg.
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2.5 km, with the temperature maximum in the gas region reaching a height of 17.5 km. At that instant of time, the
depth of the crater (bubble) is 7.5 km with a radius of 4 km.

The change in the integral characteristics with time is shown in Fig. 3. The asteroid is retarded, and its ki-
netic energy decreases rapidly; its internal energy increases and attains its maximum in t = 0.18 sec (0.75/E0). There-

Fig. 2. Fields of density ρ (a–c), pressure P (d–f), and temperature T (g–i) at
time moments 0.05 sec (a, d, g), 0.3 sec (b, e, h), and 2 sec (c, f, i). ρ,
kg/dm3; P, GPa; T, eV; z, r, km.
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after the internal energy gradually decreases (the kinetic energy increases) within 1.5 sec and thereupon remains prac-
tically constant. The axial and radial pulses increase with time and, starting from t = 0.2 sec, attain a self-similar de-
pendence. The evaporated mass Mevap attains a maximum of 150M0 (t = 0.5 sec), changes little up to the moment t
= 1.4 sec, and then decreases to 60M0 (t = 3 sec) and thereafter remains almost constant. The energy contained in the
evaporated substance attains a maximum of 0.75E0 at the instant of time t = 0.33 sec and thereupon gradually de-
creases. To carry out estimations we adopt the energy of water evaporation equal to q = 2.4 MJ/kg. If the entire ki-
netic energy of the asteroid had been spent on evaporation, the maximum possible mass of evaporated water would be
equal to Mevap′  = M0u0

2/(2q) = 500M0. Thus, the maximum of the ratio Mevap
 ⁄ Mevap′  is equal to 0.3. In the variant of

calculation of impact upon a granite ground, that value is equal to 0.26, i.e., there is a small difference. A comparison
of the energy maxima contained in the evaporated substance in these variants also demonstrated their closeness: 0.67
(granite) and 0.75 (water). We note that the moments when these maxima of the evaporated mass and energy were
attained in the evaporated substance are also close for these two variants of calculation.

It is interesting to compare changes in the depths of craters with time for different types of target material
and different impact velocities. For this we use the results of the following variants of two-dimensional calculations of
an impact: upon gabbroid anorthosite with a velocity of U = 17.7 km/sec (variant 1), U = 50 km/sec (variant 2), U =
141.4 km/sec (variant 3); and with a velocity of U = 50 km/sec upon granite (variant 4) and water (variant 5). In all
of the variants of calculation, the dimensions of the striker were the same (H = d = 1 km), with the materials of the
striker and target coinciding. In the first three variants the Tillotson equation of state [4] was used; in the fourth vari-
ant it was a semiempirical wide-range equation of state with allowance for evaporation [4], and in the fifth variant —
the aforegiven equation of state for water. As far back as in their earlier works on two-dimensional simulation of a
high-velocity impact, Diens, and Walsh derived a similarity criterion [11] according to which a flow in a target at long
times turns out to be identical if strikers are characterized by the same value LUα with α C 0.59. Here, L = V1 ⁄ 3 is
the characteristic size of the striker and U is the impact velocity. The long time signifies an interval much longer than
the characteristic time τ = L ⁄ U. The authors termed this concept the late-stage equivalence. According to this concept,
the coordinate of the shock-wave front in the target X depends on time as follows:

X = Ct

α
1+α (LU

α)
1

1+α = C [L (Ut)α
]

1
1+α , (2)

Fig. 3. Temporal behavior of integral characteristics: a) internal (1) and kinetic
(2) energies; b) evaporated mass; c) radial (1) and basic (2) pulses; d) fraction
of energy in evaporated substance. t, sec; E, 1020 J; I, 1019, g⋅cm/sec.
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where C is the dimensionless constant. For the sake of definiteness, as X we select the position of the shock-wave
front on the symmetry axis. The velocity of the shock-wave front is equal to
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dX
dt
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The latter two equalities in (3) demonstrate the way in which the shock-wave velocity changes depending on the dis-
tance covered or with time. Since the pressure in the shock wave considerably exceeds the initial pressure in the tar-
get, the density at the shock-wave front attains a limiting compression ρ1 which is proportional to the target density

ρ0 (for a perfect gas, ρ1 = 
γ + 1
γ − 1

 ρ0). Therefore, the pressure at the shock-wave front is proportional to the value
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Relation (4) demonstrates the similarity law for transition from some velocities to others. The pressure at the shock-
wave front has a given value at distances proportional to LUα or instants of time proportional to LUα. Thus, the re-
duced coordinates (to compare different-velocity impacts) have the following dependence on the impact velocity:

X1 D 
X

LU
α

 ,   t1 D 
t

LU
α . (5)

These very dependences can be seen from expressions (3) for the shock-wave velocity. If we go over from the veloc-
ity to the kinetic energy of the striker E D U2, we will obtain the following dependence of the reduced coordinates on
energy: X1 D X ⁄ Eα ⁄ 2 and t1 D t ⁄ Eα ⁄ 2. As is known, in the self-similar solution of the problem on a spherical strong
explosion (obtained by L. I. Sedov [12]) with energy E, these coordinates have the form r D r ⁄ E1 ⁄ 3 and t1 D t1 ⁄ E1 ⁄ 3.
Thus, the dependences of the reduced coordinates on the energy of impact and explosion differ not very markedly: for
an impact (α = 0.59) Eα ⁄ 2 = E1 ⁄ 3.4, whereas for an explosion E1 ⁄ 3. In these coordinates, in the shock-wave-front mo-
tion law (2) the dependence on the impact velocity disappears (is transferred into the reduced coordinates):

X1 = C1t1

α
1+α , (6)

where C1 is a constant (dimensional). This relation allows one to compare different-velocity impacts by using a single
relation.

To consider the change in the depth of the crater with time we will note the following. In the problem on
motion of a gas under the action of a short impact (a one-dimensional approximation, plane geometry equation of state
for a perfect gas) it was clearly shown by Ya. B. Zel’dovich that in a flow there is always a small mass of gas which
"remembers" the conditions of the effect and is not described by a self-similar solution [13, 14]. It is significant that
this gas region, which retreats from the target, is located behind a specific line (beyond the sphere of influence) and
therefore does not exert any effect on the shock-wave propagation in the target. If such a picture is also correct for
an axisymmetrical impact, then the flow in the crater (and also near its bottom) must be described by a self-similar
solution. Then the reduced depth of the crater h1 D h/(LUα) vs. the reduced time (for long times) is described by a
relation similar to (6):

h1 = C2t1

α
1+α . (7)
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Later a similar problem on a short impact was considered for condensed media described by the Mie–Gru
..

neisen equa-
tion of state in [15], where also a self-similar solution was obtained with the self-similarity index changing within the
range 0.61–0.63 (for various parameters of the equation of state for iron, copper, and aluminum).

Figure 4 demonstrates the calculated dependence of the depth of the crater on time (in reduced coordinates)

for the above-indicated five variants. In this figure, as the reduced depth and time the values h1 = h ⁄ 


U
U0





α
 and t1 =

t ⁄ 


U
U0





α
 are used at α = 0.59 and U0 = 50 km/sec. We note that calculations with different equations of state for the

indicated variant yield somewhat different indices of self-similarity α lying within the range 0.58–0.63. It is also seen

that for a time t exceeding approximately 10τ all the dependences attain a single self-similar line according to relation

(7). For comparison, in the figure a bold line is given, which corresponds to the self-similar dependence with α = 0.59
(it is displaced upwards not to obscure the results of two-dimensional calculations).

A comparison of impacts with the same velocity but different materials of the target allows the following con-
clusions. The values of the maximum of evaporated mass relative to the maximum possible evaporated mass turn out
to be practically identical and equal to 0.26–0.3. The ratios of the maximum energy contained in the evaporated sub-
stance to the initial energy of the striker also appear to be close and approximately equal to 0.7. The dependence of
the crater depth on time demonstrates the attainment of a single self-similar solution (at the late stage of the flow) for
various materials of the target and in a wide range of impact velocities.

NOTATION

d, diameter of a body, km; D, velocity of a shock wave, km/sec; gi and Ii, statistical sum and ionization po-
tential of a corresponding ion; h, depth of a crater, km; ², Planck constant; i, number of ion; k, Boltzmann constant;
L = V1 ⁄ 3, characteristic size of the striker, km; l, coefficient; V, volume of the striker, km3; M0, mass of the striker,
kg; m, mass of a molecule; me, mass of an electron; ne and ni, concentration of electrons and ions of ith multiplicity,
m−3; P, pressure, GPa; Q, dissociation energy, J; q, evaporation energy, MJ/kg; r, z, coordinates, km; R, universal gas
constant; t, time, sec; T, temperature, eV; v and u, radial and axial velocity components, km/sec; U, initial velocity of
the striker, km/sec; α, self-similarity index; ε, energy of a unit mass, MJ/kg; ρ, density, kg/dm3; ρ0, normal density of
a substance in a condensed state, kg/dm3. Subscripts: e, electron; ion, ionization; c, cold; th, thermal; d, dissociation;
cr, critical; m, molecular; a, atom; evap, evaporated.
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